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TOPEX/POSEIDON Operational Orbit Determination

Results Using Global Positioning Satellites
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Results of operational orbit determination, performed as part of the TOPEX/

POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment,
are presented in this article. Elements of this experiment include the GPS satel-

lite constellation, the GPS demonstration receiver on board TIP, six ground GPS

receivers, the GPS Data Handling Facility, and the GPS Data Processing Facil-

ity (GDPF). Carrier phase and P-code pseudorange measurements from up to 24
GPS satellites to the 7 GPS receivers are processed simultaneously with the GDPF

software MIRAGE to produce orbit solutions of TIP and the GPS satellites. Daily

solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and

DORIS precision orbit solutions.

I. Introduction

The Global Positioning System (GPS) Data Process-

ing Facility (GDPF) was developed to demonstrate op-
erational orbit determination and navigation support for

TOPEX/POSEIDON. Orbit solutions are based on data

collected by the GPS demonstration receiver (GPSDR) on

board TOPEX/POSEIDON and six ground receivers. In
addition, the GDPF is intended to evolve into a NASA

resource for future low Earth-orbiting missions under the

NASA Office of Space Communications.

An updated software set, based on the JPL institu-

tional Orbit Determination Program (ODP), was created
and named "MIRAGE." It stands for Multiple Interfero-

metric Ranging Analysis using GPS Ensemble. MIRAGE

maintains the complete interplanetary capability of the

ODP software with the additional multisatellite and pre-

cision modelling features required for subdecimeter orbit

determination. The GDPF scope of work includes pre-

processing observations, performing orbit determination,

producing predicted GPS and TOPEX/POSEIDON satel-
lite almanacs for mission operations, and archiving raw

and processed data. Figure 1 shows the interfaces of the
GDPF.

II. Observation Preprocessing

Daily TOPEX/POSEIDON flight receiver raw data are
collected from the TOPEX/POSEIDON ground system
within 24 hours of the last observation. The raw data
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consist of carrier phase every second and P-Code pseu-

dorange every 10 sec. In addition, the GPSDR onboard

navigation solution (i.e., clock, position, and velocity) are
provided every 10 sec. Descriptions of these observables

can be found in many publications [1,2].

Automated reformatting and outlier and cycle slip edit-

ing are performed first. Next, the data are decimated to

5-min intervals, and a time-tag correction, based on a lin-

ear fit to the navigation clock solution, is applied. Finally,

linear combinations of the pseudorange (/91 and P_) and

carrier phase (L1 and L2) dual-frequency measurements

are computed to produce ionosphere calibrations. These

are applied to the raw P1 and L1 observations to produce
the orbit determination observables Pc and Lc.

The ground GPS receiver observations are available
from the GPS Data Handling Facility about 36 hr after the

last data are collected. Both the carrier phase and pseudo-

range data are provided in receiver-independent exchange

(RINEX) [3] format at 30-sec samples. The same editing
and calibration steps are performed as described above for

the GPSDR. Besides the six core ground sites, data from

nine backup sites are also collected and processed. The

primary and backup ground receiver locations are shown

in Fig. 2.

For MIRAGE orbit determination processing, a merged

file of edited GPSDR and ground receiver data is created
in standard MIRAGE format. Two additional text files, in

RINEX format, are produced for export. One is the raw

GPSDR data while the other is the edited, calibrated, and

compressed GPSDR measurements. All files are archived

along with data collection and preprocessing statistics.

III. Orbit Determination Strategy

Thirty-hour data sets are constructed from the prepro-

cessed observations to produce a 24-hr orbit solution. The

additional data are fit to allow for internal consistency

checks of the daily overlaps. Global GPS constellation

coverage is realized by selecting a minimum of six ground
station GPS receiver sites. Additional sites are selected to

fill gaps during primary site outages.

Orbit determination using MIRAGE consists of three

major steps. Iteration through each step is done until con-

vergence of the state solutions and observation residuals is
achieved. The three steps are

(1) Trajectory propagation.

(2) Observation processing.

(3) Filtering and smoothing.

A. Trajectory Propagation

To achieve subdecimeter accuracies, several dynamic
force models are required. Tables 1 and 2 summarize

the force models used in the numerical integration of
the TOPEX/POSEIDON and GPS satellite trajectories.

Reference frame, force, and measurement model parame-

ters are based on TOPEX/POSEIDON and International

Earth Rotation Service (IERS) standards [4].

B. Observation Processing

Both carrier phase and P-Code pseudorange data are

processed. Table 3 lists the measurement models used for

producing observation residuals. Again, these models are
based largely on IERS standards.

C. Filtering and Smoothing

The filter and smoother generate corrections to the

parameters affecting the trajectory propagation and the

observation processing. MIRAGE employs a numerically

stable square-root information filter that can compute

smoothed estimates of time-varying stochastic parame-

ters. Our orbit determination strategy employs a fidu-

cial concept where three ground receivers, assumed to
have well-known coordinates, are held fixed while the filter

estimates the positions of three nonfiducial ground sta-

tions [5]. In addition, the states of the GPS satellites

and TOPEX/POSEIDON are estimated along with the

GPS satellite solar-pressure model parameters. The fil-

tering strategy consists of a two-stage process--dynamic

tracking followed by reduced dynamic tracking. In dy-

namic tracking, the accuracy of the orbit is limited by

the precision of the dynamic models applied during tra-

jectory propagation. In reduced dynamic tracking, the
high-quality geometric information provided by the GPS

measurement system is used to obtain a h_gh:precisi0n

TOPEX/POSEIDON trajectory. Essentially, reduced dy-

namic tracking exploits the extreme precision of carrier

phase tracking by using it to smooth the geometric solu-

tions obtained from the less-precise pseudorange measure-

ments. Although the success of the reduced dynamic tech-

nique is contingent on high-precision modeling of the GPS
observations, the accuracies of the resultant trajectories

are not degraded by deficiencies in the a priori dynamical
models.

1. Data Weighting. The measurement precisions ex-

pected from the GPSDR and ground receiver observations

were determined from ground tests before launch. Data
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weights consistent with these analyses and applied during

filtering are shown in Table 4.

2. Stochastic Clock Estimation. To eliminate syn-

chronization errors due to unstable oscillators, clock bi-
ases at the receivers and GPS transmitters are estimated

at each measurement time. In the filter, one ground clock

is chosen as a reference and a stochastic clock bias is es-

timated at each of the other receivers and GPS transmit-

ters. A white noise stochastic process is employed with

a batch length coinciding with the measurement intervals
and the estimated smoothed clock biases are fed back to

the observation processing module. As with standard dou-

ble differencing techniques, the stochastic clock estimation

strategy eliminates common clock errors. However, the
stochastic method avoids both the difficulties of selecting

a set of nonredundant double-difference combinations and

the data noise correlations inherent in differenced mea-

surements.

3. Stochastic Phase Bias Estimation. The contin-

uously tracked GPS carrier phase precisely measures the

relative range change between a GPS transmitter and its
receiver. However, the carrier phase is ambiguous, which

requires the estimation of a constant phase bias for each
continuous pass between a transmitter and a receiver. In

the filter, each phase bias is estimated as a white noise

stochastic parameter that remains constant over a pass.

At tracking discontinuities, the filter applies a white noise

stochastic update for the bias parameter corresponding
to an individual transmitter-receiver pair. The smoother

generates a time profile of phase bias corrections that are
applied during subsequent observation processing. This

stochastic phase bias estimation strategy is efficient in
terms of computation time and memory requirements, but

does not attempt to resolve the integer nature of the phase
biases.

4. Stochastic Estimation of Tropospheric Fluc-

tuations. The model for troposphere delay is decomposed

into a wet and a dry component.

p = pz, nd(O) + pz,_(O)

where Pz is the zenith delay and R is a mapping function

that maps the zenith delay to the line of site at elevation 0.
The fluctuations in the wet zenith delay are modeled as a

stochastic random walk. The wet zenith delay is estimated

at 5-min intervals (coincident with the measurement in-

terval) using an a priori sigma of 5 cm and an effective
batch-to-batch sigma of 3 mm for the noise driving the

random walk process. As with the phase and clock biases,

the smoothed time profiles of the stochastic fluctuations
are fed back into the observation processing module on

subsequent iterations of the orbit determination program.

5. Reduced Dynamic Tracking. The MIRAGE

filter executes the reduced dynamic tracking strategy by

modeling the three-dimensional accelerations on TOPEX/

POSEIDON as exponentially time-correlated stochastic

processes. The relative weighting of the dynamics and ge-

ometry may be adjusted by varying the time constant and

the magnitude of the process noise uncertainty. A large
time constant corresponds to a dynamic strategy while

a short time constant emphasizes the geometry. In the

orbit determination for TOPEX/POSEIDON, the three
accelerations were updated at 5-min intervals; the time

constant was 15 min with a corresponding batch-to-batch

sigma of 7 x 10 -9 m/see 2 for the radial acceleration and

14 x 10 -9 m/seJ for the spacecraft X and Y accelera-

tions. This choice of filter parameters allowed deficiencies

in the nongravitational force models to be compensated for

by the stochastic accelerations; however, enough dynami-
cal information is retained so that temporary degradation

of the viewing geometry would not seriously reduce the
accuracy of the output trajectory [6,7,8]. A summary of

estimated parameters is given in Table 5.

IV. Orbit Determination Accuracy

Before launch, the MIRAGE software was intercom-

pared with the GEODYN and UTOPIA software sets from

the Goddard Space Flight Center (GSFC) and the Uni-

versity of Texas Center for Space Research (UTCSR), re-

spectively. The intercomparison validated all dynamic tra-

jectory models for TOPEX/POSEIDON and verified the

laser range measurement models. For all cases, including
the combined models case, the maximum radial differences

were approximately 1 cm or less for a 10-day orbit. An ad-
ditional intercomparison with the UTCSR GPS software

MSODP to validate trajectory models'for the GPS satel-

lites was performed. All but the occulting solar radiation

pressure produced subcentimeter, 10-day orbit compar-
isons. The solar radiation pressure intercomparison tests

have been postponed due to the expected release of im-

proved models.

After launch, the operational orbit determination accu-

racies have steadily improved as the procedures and tech-

niques have been fine-tuned. Accuracy comparisons are
broken into three distinct processing phases. The dates
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and groundtrack repeat cycles for each are presented in
Table 6.

Data prior to cycle five were not considered for this

analysis due to difficulties in the early days of the GPSDR

plus the occurrence of several anti-spoofing days. Phase 1

processing was performed before most internal and exter-

nal consistency checks (see below) were used; thus, it is

not representative of the achievable accuracies. Phase 2

processing used 24-hr arcs with the dynamic technique

augmented with empirical once- and twice-per-revolution
parameters. Phase 3 consisted of 30-hr arcs with the ad-

ditional reduced dynamic tracking strategy.

Statistics collected for the GPS carrier phase residu-

als (observations minus computed values) are presented

in Fig. 3. These residuals are from phases 2 and 3 only.
A marked reduction in the residuals is seen when the re-

duced dynamic technique is employed. Most of the gaps

are due to GPS constellation anti-spoofing activity when

no GPSDR data were available. Only 15 days of outage

are associated with GPSDR software problems.

TOPEX/POSEIDON orbit comparisons have displayed

subdeeimeter agreements in the radial component with

1-day GPS precision orbit determination (POD) solutions

and orbits derived from satellite LASER range (SLR)
and Doppler orbitography and radiopositioning integrated

by satellite (DORIS) data. Figures 4 and 5 show the
three-dimensional and radial rms orbit differences during

phases 2 and 3. The MIRAGE dynamic solutions are com-

pared with dynamic solutions determined from laser data.

These laser solutions are based on 10-day fits from GSFC's

GEODYN program. In Fig. 5, the MIRAGE reduced dy-
namic solutions are compared. They are compared with

another reduced dynamic solution from the GPS GIPSY

OASIS software that is part of the GPS Demonstration

Experiment POD segment.

V. Processing Automation and Error
Checking

One goal of the GDPF was to automate as much of the

processing as possible. Beginning with the data collection

through the delivery of final products, each aspect of the

processing was examined and automated by means of stan-
dard Unix scripts and X-window interfaces to the scripts.

Dashed lines in Fig. 1 denote automatic procedures that

do not require human intervention. User inputs changing

from day to day, such as tile date, duration, and transmit-

ting and receiving participants, are controlled via a graph-
ical X-window interface that eliminates user input errors
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and ensures operational consistency. Error mail messages
are generated to alert operators of malfunctions in the au-

tomated noninteractive scripts.

Vh Off-Nominal TOPEX/POSEIDON Attitude
Modelling

Robust processing of off-nominal TOPEX/POSEIDON

satellite attitude events is available in two ways. First, the

actual attitude event change times (e.g., fixed to sinusoidal
yaw steering event) are designed as user inputs. Secondly,

the trajectory processing can use the attitude quaternions

from telemetry. So far, all attitude events, except orbit

maintenance maneuvers, have been accurately modelled

with the user input overrides. The actual telemetry was
required only for the maneuver.

VII. SLR and DORIS Data Types

In addition to the GPS P-code pseudorange and car-

rier phase observables, the MIRAGE software can process

SLR and DORIS data. SLR and DORIS data types were

incorporated to support TOPEX/POSEIDON verification
activities. The SLR orbits are included in the Interim Geo-

physical Data Records (IGDR) science product [9]. Orbit

file formats are identical for all data types (i.e., PFILE

format); therefore, no interface changes are required for
IGDR processing with MIRAGE GPS orbits. A utility

has also been developed as part of the MIRAGE software

to convert, any MIRAGE orbit file into the precision orbit

ephemeris (POE) format.

VIII. TOPEX/POSEIDON Mission Operations
Support

A routine GDPF task is to produce GPSDR almanac

predictions for initial acquisition operations. Almanac

data are produced twice weekly as a contingency for rapid
GPSDR failure recovery. The data are delivered to the

Spacecraft Performance Analysis Team for reformatting

and subsequent uplink to the GPSDR by the Flight Con-
trol Team.

IX. GPS Anti-Spoofing =Results

During GPS constellation anti-spoofing activities, only

Clear-Acquisition (CA) code pseudorange and L1 carrier



phasedataareavailablefromtheGPSDR.However,anin-
ternalreceivercalibrationprovidesforanionospherecor-
rectiontothegroundreceiverdata.Preliminarytestshave
producedsubdecimeterradialdifferencesfor limitedsets
of databyproducinganapproximateionospherecalibra-
tion.Thiscalibrationisderivedbysubtractingthecarrier
phasemeasurementsfromtheCA-codepseudorangemea-
surementsandsmoothingtheresultingsignalto remove
themultipathsignal.Thisyieldsanionospherecorrection
thatcanthenbeappliedtoboththeCA-codepseudorange
andcarrierphasedata.

X. GDPF Resources

Required GDPF resources in terms of personnel, com-

puter time, and actual time to produce a 1-day (30-hr) so-

lution are given in Table 7. Members of the operational or-
bit determination team work on a five-day-per-week sched-

ule. Weekend backlogs are eliminated during this schedule.

The totals given in Table 7 are for one team member per
workstation. Continuous operation of the GDPF required

a total of three members. The breakdown of tasks for
the GDPF team is shown in Table 8. With the automa-

tion developed thus far, a single person could easily handle
nominal production. The remainder of the team consists

of backups, a lead, and sustaining hardware maintenance

personnel.

Xl. Conclusions

Operational orbit determination has been demonstrat-

ed for TOPEX/POSEIDON using the GPS constellation

(20 to 24 satellites), the TOPEX/POSEIDON demonstra-

tion receiver, 6 ground receivers, the GPS Data Handling
Facility, and the GPS Data Processing Facility. Compar-

isons between the MIRAGE orbit solutions and other pre-

cision orbit solutions based on LASER, DORIS, and GPS

yield subdecimeter radial results. Both tile GPS dynamic

and reduced dynamic results from MIRAGE appear to ex-

ceed the original performance requirements (approximate

1-m radial position) and give results comparable to other

geodetic quality software.
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Table 1. Force models for TOPEX/POSEIDON.

Model Description

N-body

Earth geopotential

Indirect Earth-Moon Oblateness

Solid Earth tides

Ocean tides

Rotational deformation

Relativity

Solar radiation pressure

Atmospheric drag

Albedo and infrared Earth radiation

Empirical accelerations

All planets, Sun, and Moon

50 x 50 truncated Joint Gravity Model-2 (JGM-2)

2 x 2 lunar model

IERS

JGM-2

IERS

Point mass Earth + Lense-Thirring

Conical shadow model

Drag/temperature air density model

2nd degree zonal model

Once/rev and twice/rev models

Table 2. Dynamic force models for GPS satellites.

Model Description

N-body

Earth geopotential

Indirect Earth-Moon oblateness

Sofid Earth tides

Ocean tides

Rotational deformation

Relativity

Solar radiation pressure

All planets, Sun, and Moon

12 x 12 truncated JGM-2

2 x 2 lunar model

IERS

JGM-2

IERS

Point mass Earth + Lense-Thirring

Rock4 and Rock42 models

Table 3. Measurement models.

Model Description

Solid Earth tides

Rotational deformation (pole tide)

Ocean loading

Polar motion

Plate motion

Earth center-of-mass offset

0th-, lst-, and 2nd-order corrections

IERS

IERS

Daily values from University of Texas

Linear velocities

Currently zero
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Table4.GPSobservationweights.

Data type GPSDR Ground station

Carrier phase, cm 2 1

Pseudorange, m 2 1

Table 5. Estimated parameters.

Parameter(s) Number of parameters

TOPEX state 6

GPS states (24 satellites average) 144

Station locations (3-ground Stations) 9

GPS solar pressure scale factors and Y-bias 72

Empirical dynamic parameters 9

Stochastics: (30-hr arcs with 5-rain updates)

Troposphere (six ground stations) 6

TOPEX and ground clocks (one master clock fixed) 30
Carrier phase biases ,_160

TOPEX body-fixed accelerations (X, Y, Z) 3

Total -_439

Table 6. Dates for groundtrack repeat cycles.

Phase Dates Cycles

1

2

3

: _:_

November 3, i992-December 21, 1992 5-9

December 22, 1992-May 2, 1993 10-23

May 3, 1993-October 28, 1993 24-40

i
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Table7.GDPFprocessingperformance.

Processing phase CPU time, hr Actual time, hr

Data preprocessing a

Collection 0.1 0.1

TOPEX/POSEIDON editing 1.3 1.4

Ground station editing 0.4 0.5

Editing 0.1 0.1

Reformatting 0.1 0.1

Total 2.0 2.2

Orbit estimation (per iteration)
Initialization 0.1 0.2

Trajectory propagation 0.3 0.3

Observation residual computation 0.5 0.5

Parameter estimation 0.1 0.1

Stochastic parameter smoothing 0.1 0.1

Three-iteration total 3.3 3.6

Archive 0.1 0.2

Total 5.4 6.0

Automated processing performed prior to start of work day.

Table 8. GDPF personnel requirements.

Task Personnel

Lead _ 1

Data conditioning 1

Orbit conditioning 1

Hardware maintenance 0.5

a Lead will also assist and back up data-conditioning and orbit
determination functions.
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GPS SATELLITES

GPS

PRECISION
ORBIT
DETERMINATION

TGS / SATELLITE
PERFORMANCE
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AND ATMOSPHERIC
ADMINISTRATION

I__J TEXASCENTER
FOR SPACE

[ RESEARCH

Fig. 1. GPS Data Processing Facility interfaces.
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Fig. 3. MIRAGE observation residuals from TOPEX/POSEIDON
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Fig. 4. MIRAGE GPS dynamic orbit solutions compared with laser
and DORIS solutions.
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